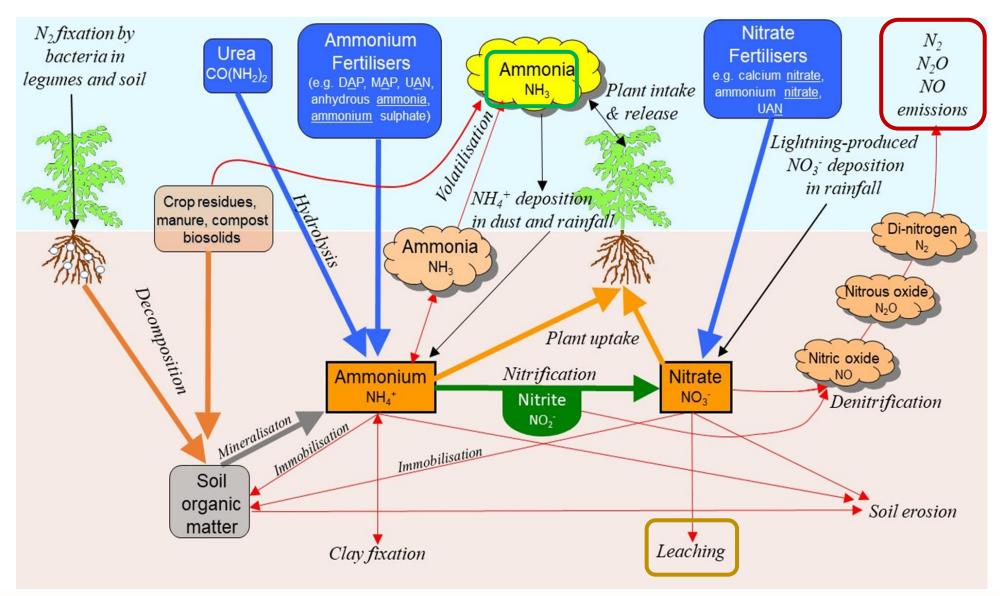


Caso studio 2: Az. Agr. Corte Piccola Fertilizzanti innovativi: circolarità, efficienza d'uso e mitigazione ambientale

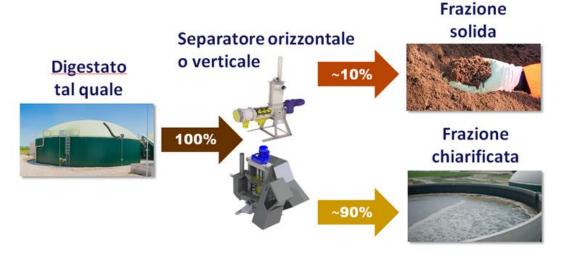


Ciclo dell'azoto e vie di fuga

Le principali vie di fuga dell'azoto:

- Emissioni N₂O:
 Gas serra
- Volatilizzazione
 NH₃:
 Particolato
 atmosferico
- Lisciviazione NO₃⁻:
 Rischio per le falde

Reflui zootecnici: tradizione e innovazione




Fertilizzanti innovativi: digestato microfiltrato

Fase 1 – Separazione solido-liquido

Fase 2 - Microfiltrazione

Fase 3 – Fertirrigazione con ali gocciolanti

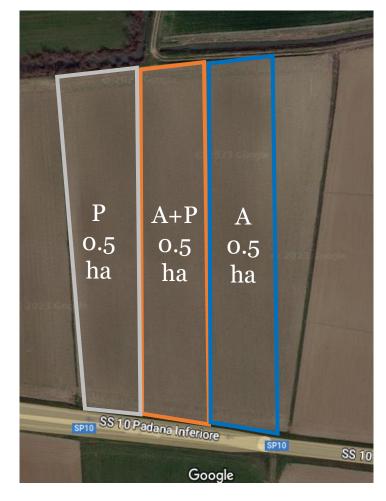
In alternativa...

Caso studio 2: Az. Agr. Corte Piccola

Materiali e metodi

Caso studio 2: Az. Agr. Corte Piccola Il campo prova

«A» (Ante) = fertilizzazione con liquame separato liquido al 100% in pre-semina;


«A+P» (Ante+Post) = fertilizzazione al 50% in presemina

+ 50% in copertura con fertirrigazione (2 interventi);

«P» (Post) = fertilizzazione al 100% in copertura con fertirrigazione
(4 interventi)

Caratteristiche del terreno

SABBIA (%)	LIMO (%)	ARGILLA (%)	$\mathrm{pH}_{\mathrm{H2O}}$			P Olsen (mg kg ⁻¹)	K sc. (mg kg ⁻¹)
26	52	22	8.11	20	1.6	37	353

Applicazione del microfiltrato

Gruppo motore-pompa per pescaggio del microfiltrato e gruppo filtri di sicurezza

Contalitri per il microfiltrato

Dettaglio del filtro di sicurezza in contro-lavaggio

Contalitri per la soluzione acquamicrofiltrato

Caratteristiche medie microfiltrato								
Pre-diluizione Post-diluizione								
Sostanza secca (%)	5.2	0.9						
NTK (g kg ⁻¹)	3.7	0.6						
N-NH ₄ ⁺ (% NTK)	51	58						

Operazioni colturali

mais

29/03/2021 Liquamazione superficiale seguita da interramento

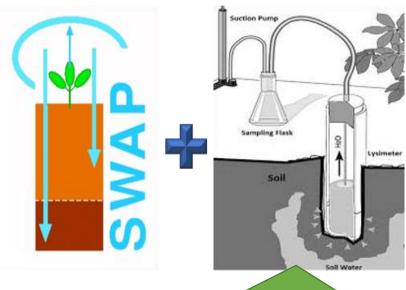
18/04/2021 Semina mais Planta (SNH 9503)

4 Fertirrigazioni

Apporti azotati

			-	Volumi (m³ ha-1)			NTK applicato (kg ha ⁻¹)		
	SS (%)	NTK (g kg ⁻¹ t.q.)	N-NH ₄ ⁺ (% NTK)	A	A+P	P	A	A+P	P
Applicazione superficiale ^a	3.8	3.0	54.6	88	49	О	265	147	О
I fertirrigazione ^b	0.3	0.2	76.2	O	160	160	O	26	26
II fertirrigazione ^b	1.0	0.7	59.3	O	О	94	O	О	64
III fertirrigazione ^b	1.0	0.7	44.8	0	148	148	O	97	97
IV fertirrigazione ^b	1.2	0.9	51.7	О	О	96	O	O	89
Cumulativo							265	270	276

^aMicrofiltrato non diluito


^bMicrofiltrato diluito

Monitorare le perdite azotate

Volatilizzazione di ammoniaca

Lisciviazione del nitrato

Emissioni di N2O

Parametri monitorati sulle rese

- Produzione di granella
- Produzione di biomassa
- Asportazioni azotate (granella e totali)
- Efficienza d'uso dell'azoto (NUE)
- Efficienza di asportazione (NUpE)
- Efficienza di conversione in granella (NUtE)

N Use Efficiency (NUE; kg kg⁻¹)

- = Resa granella / N disponibile
- $= NUpE \times NUtE$

Dove:

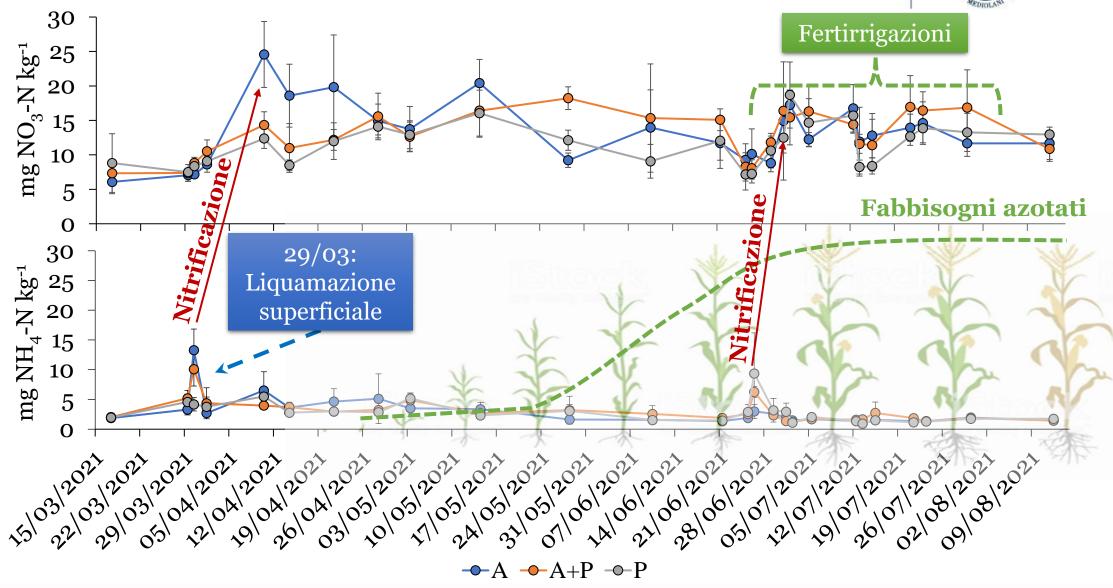
- N disponibile = N dal suolo + N da fertilizzante;
- N dal suolo = NO₃-N + NH₄-N + N mineralizzato;
- N mineralizzato (kg ha⁻¹) = $12 \times S.O.$ (%) × 0.75

N Uptake efficiency (NUpE; kg kg⁻¹)

= N pianta / N disponibile;

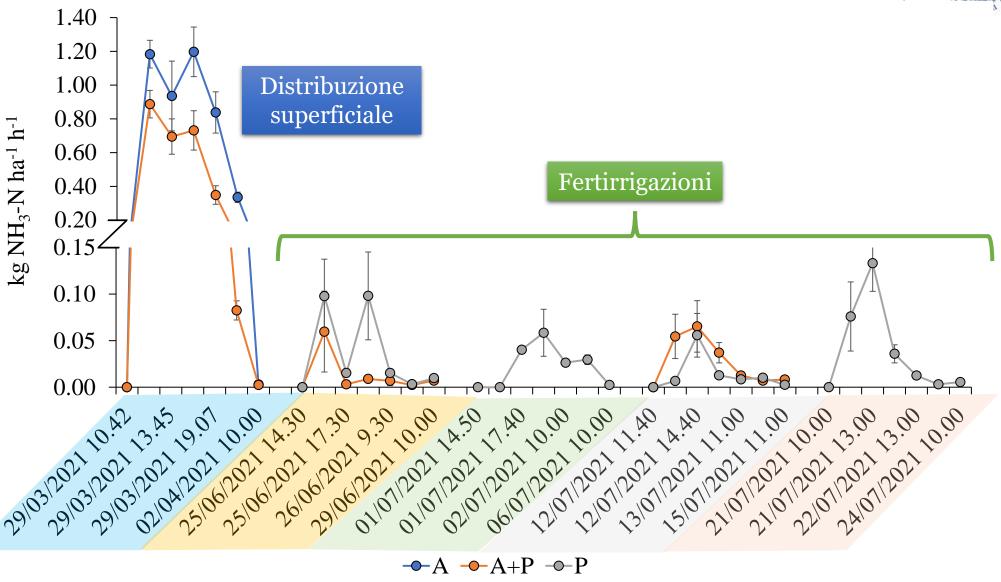
N Utilization efficiency (NUtE; kg kg⁻¹)

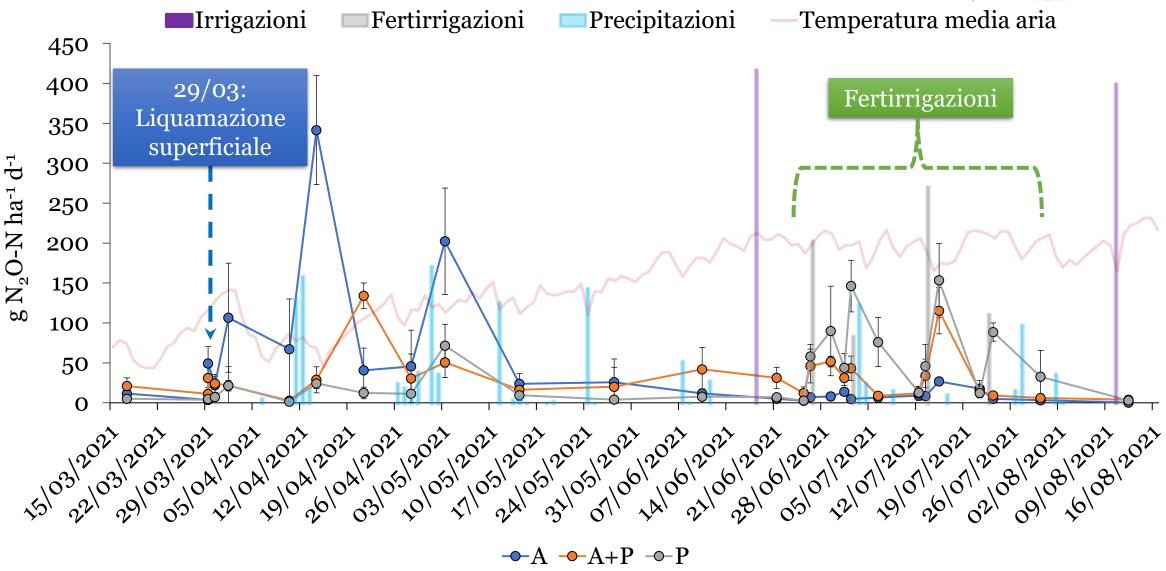
= Resa granella / N pianta

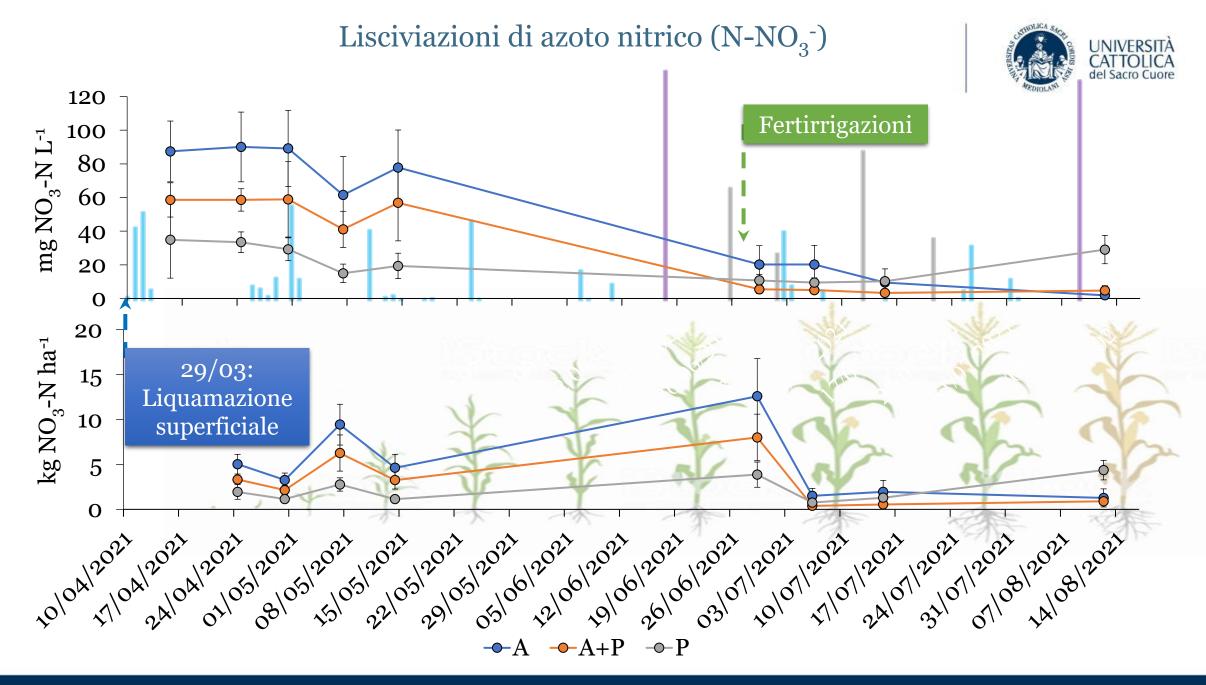


Caso studio 2: Az. Agr. Corte Piccola

Risultati


Contenuto in azoto nitrico (NO₃-N) e ammoniacale (NH₄+N) del suolo (0-30 cm)


Volatilizzazione di ammoniaca



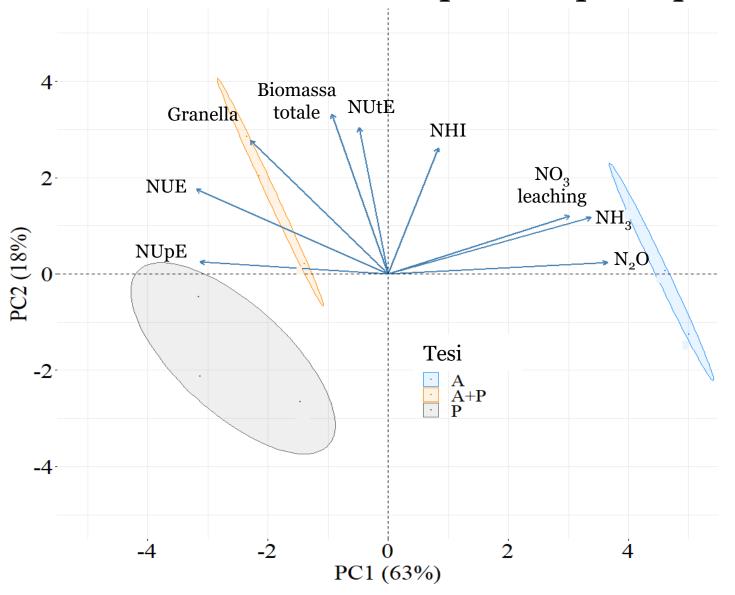
Emissioni di protossido di azoto (N₂O)

Perdite azotate

				Perdite
	Perdite NH ₃ -N	«Perdite» NO ₃ -N	Perdite N ₂ O-N	cumulative N
	(kg ha ⁻¹)	(kg ha ⁻¹)	(kg ha ⁻¹)	(kg ha ⁻¹)
A	14.0 a	39.7 a	6.5 a	60.2 a
A+P	8.1 b	24.8 ab	4.5 b	37.4 b
P	4.1 c	17.3 b	4.1 b	25.4 b
Signif.	***	*	***	***

	Apporti azotati (kg N ha ⁻¹)	Perdite NH ₃ -N su apporti (%)	Perdite NO ₃ -N su apporti (%)	Perdite N ₂ O-N su apporti (%)	Perdite N totali su apporti (%)
A	265	5.3 a	14.0 a	2.4 a	22.7 a
A+P	270	3.0 b	9.2 ab	1.7 b	13.8 b
P	276	1.5 c	6.3 b	1.5 b	9.2 b
Signif.		***	*	***	***

Rese e parametri di efficienza

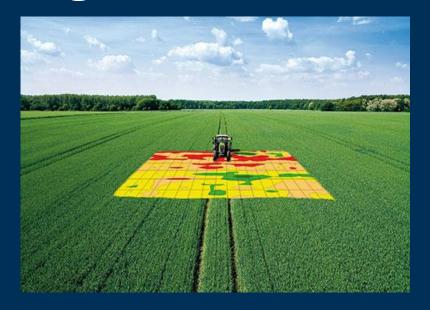


	Resa granella (Mg SS ha ⁻¹)	Stocchi e tutoli (Mg SS ha ⁻¹)	Asportazioni totali (kg N ha ⁻¹)	NUpE (kg kg ⁻¹)	NUtE (kg kg ⁻¹)	NUE (kg kg ⁻¹)
A	10.5 b	17.2 ab	237	0.7	44.5	30.8 b
A+P	12.6 a	18.6 a	284	0.8	46.4	38.1 a
P	11.0 ab	16.5 b	288	0.8	43.6	35.5 ab
Signif.	*	*	n.s.	n.s.	n.s.	*

	Resa granella (Mg ha ⁻¹)	N da liquami (kg ha ⁻¹)	N mineralizzato (kg ha ⁻¹)	NH ₃ -N (kg ha ⁻¹)	N ₂ O-N (kg ha ⁻¹)	NO ₃ -N (kg ha ⁻¹)	N rimanente (kg ha ⁻¹)	Asport. N (kg ha ⁻¹)	Bilancio N (kg ha ⁻¹)
A	10.5	265	44.2	14.0	6.5	40	249	237	12
A+P	12.6	270	44.2	8.1	4.5	25	277	284	- 7
P	11.0	276	44.2	4.1	4.1	17	295	288	7

CS 2: Analisi delle componenti principali

- Fertirrigazione efficace per contenere le maggiori vie di fuga dell'azoto (NH₃, N₂O e NO₃⁻), e per sostenere le rese
- Efficace riduzione del rischio di lisciviazione
- ➤ Da valutare con più attenzione l'efficacia della concimazione in presemina con effetto starter per la coltura di mais
- ➤ Valutare opzioni diverse dalla distribuzione superficiale per il presemina, da sole o in combinazione: iniezione, NI, acidificazione...



Caso studio 4: Az. Agr. Setti Agricoltura BIO high-tech

Caso studio 4: Az. Agr. Setti

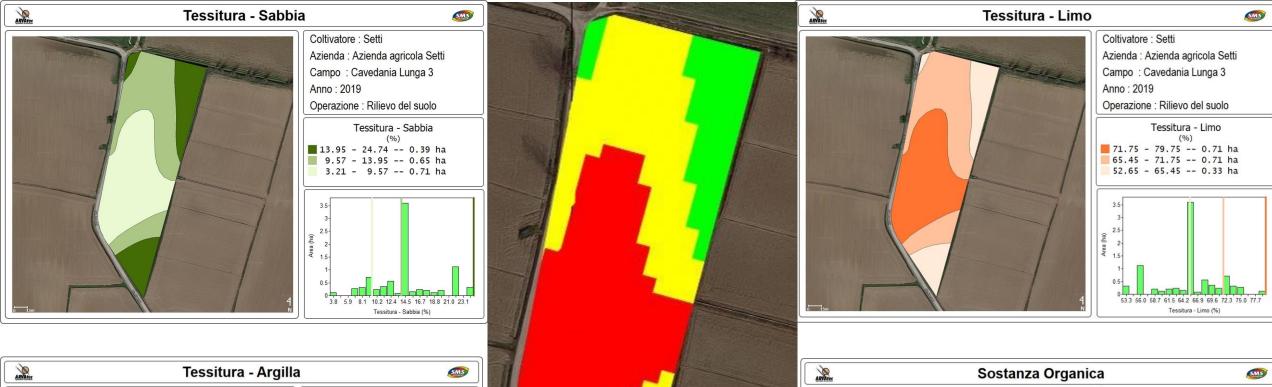
Materiali e metodi

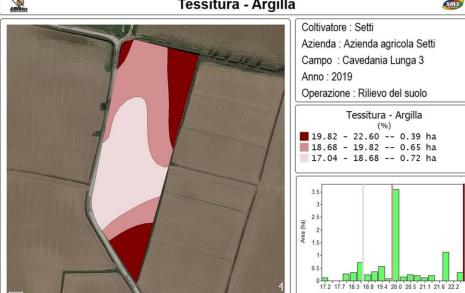
Mappatura e variabilità del Suolo

1) Rilievo con sensore iScan: Passaggi ogni 7 metri a 5 km/h

2) Campionamento mirato (0-30 cm)

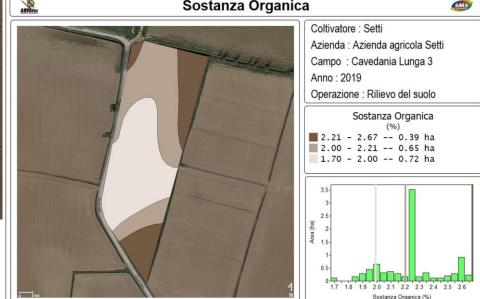
3) Calibrazione e restituzione delle mappe




Georeferenziazione dei punti di campionamento Campionamento iniziale (pre-fertilizzazione)


Campionamento finale (post-raccolta)

Analisi del suolo (UCSC)


Mais: $28/04/2022 \rightarrow 06/08/2022$

Mappa di prescrizione Reticolo: $7 \text{ m} \times 7 \text{ m}$

Prova 2021: Mais Fertilizzazione a rateo variabile

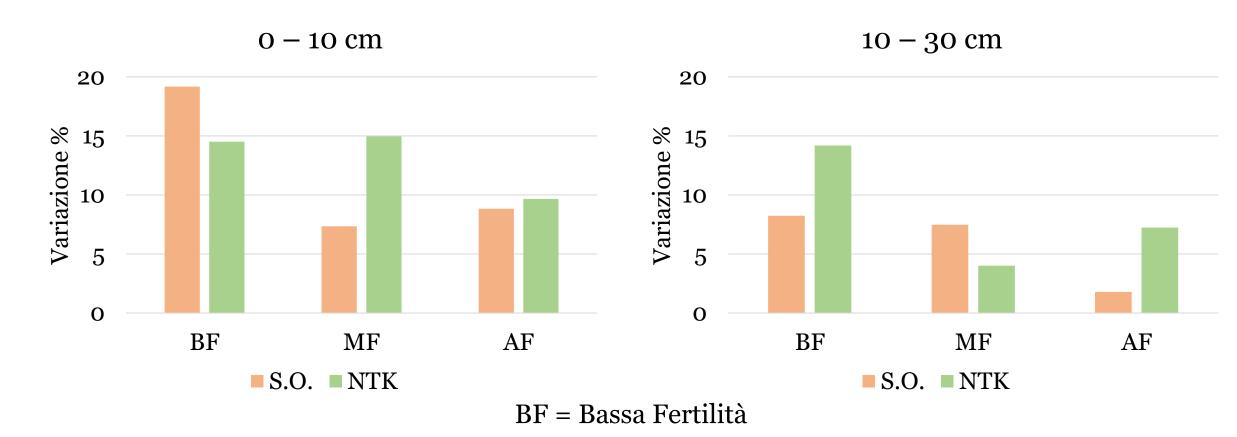
Composizione lombricompost (sul fresco):

- C% = 29.4
- N% = 2.5
- C/N = 12.1
- pH = 8.9

Dosi distribuite:

- Bassa fertilità = 15 Mg ha⁻¹
- Media fertilità = 10 Mg ha⁻¹
- Alta fertilità = 5 Mg ha⁻¹

Variazione della velocità in funzione delle aree omogenee



Caso studio 4: Az. Agr. Setti

Risultati 2022

Prova 2021: Mais Fertilizzazione a rateo variabile

MF = Media Fertilità

AF = Alta Fertilità

Grazie per l'attenzione!