# GOi Gas Loop

Cattura delle emissioni per un ciclo virtuoso dell'azoto nell'allevamento suino





Le emissioni ammoniacali dagli allevamenti suinicoli: da problema a risorsa

Webinar Martedì 12 dicembre 2023 ore 10:00

# Stato di salute degli animali e risultati zootecnici

Maria Teresa PACCHIOLI - CRPA scpa

Andrea BERTOLINI – FCSR ETS























#### Risultati attesi del progetto



- Valutare se le migliori condizioni di benessere derivante da ridotta presenza di ammoniaca, avessero effetti sulla produttività e sulla salute dei suini
- Determinare l'escrezione di azoto degli animali, fonte primaria di origine dell'ammoniaca e altri volatili azotati, attraverso il Bilancio dell'azoto



### Parametri produttivi di gruppo

|                             | 1°CICLO-I | NVERNALE      | 2° CICLO - ESTIVO |       |  |
|-----------------------------|-----------|---------------|-------------------|-------|--|
| CON SENZA                   |           | SENZA         | CON               | SENZA |  |
| lavaggio aria lavaggio aria |           | lavaggio aria | lavaggio aria     |       |  |
|                             | 22/11     | /2021         | 30/05             | /2022 |  |
|                             | 96        | 96            | 80                | 80    |  |
|                             | 66.6      |               |                   | 0     |  |



|                     |      | lavaggio aria | lavaggio aria | lavaggio aria | lavaggio aria |
|---------------------|------|---------------|---------------|---------------|---------------|
| inizio prova        |      | 22/11/2021    |               | 30/05/2022    |               |
| animali inizio n    |      | 96            | 96            | 80            | 80            |
| peso medio iniziale | kg   | 66,6          | 50,87         | 45,75         | 53,38         |
| fine prova          |      | 05/05/2022    | 17/05/2022    | 02/11/2022    |               |
| durata ciclo        | 99   | 164           | 177           | 156           | 156           |
| animali fine ciclo  | n    | 90            | 92            | 78            | 74            |
| morti/scarti        | n    | 6             | 4             | 2             | 6             |
| peso medio finale   | kg   | 189,67        | 176,3         | 172,69        | 179,19        |
| IPG                 | g/gg | 750,4         | 708,6         | 813,7         | 806,5         |
| ICA                 | n    | 4,2           | 3,97          | 3,29          | 3,7           |
| resa del mangime    | %    | 23,75         | 25,13         | 30,36         | 27,03         |
| resa macellazione   | %    | 79,98         | 80,08         | 79,96         | 80,05         |
| carnosità carcassa  | %    | 51,56         | 52,48         | 52,89         | 52,29         |

WEBINAR Martedì 12 dicembre 2023Luogo data Le emissioni ammoniacali dagli allevamenti suinicoli: da problema a risorsa





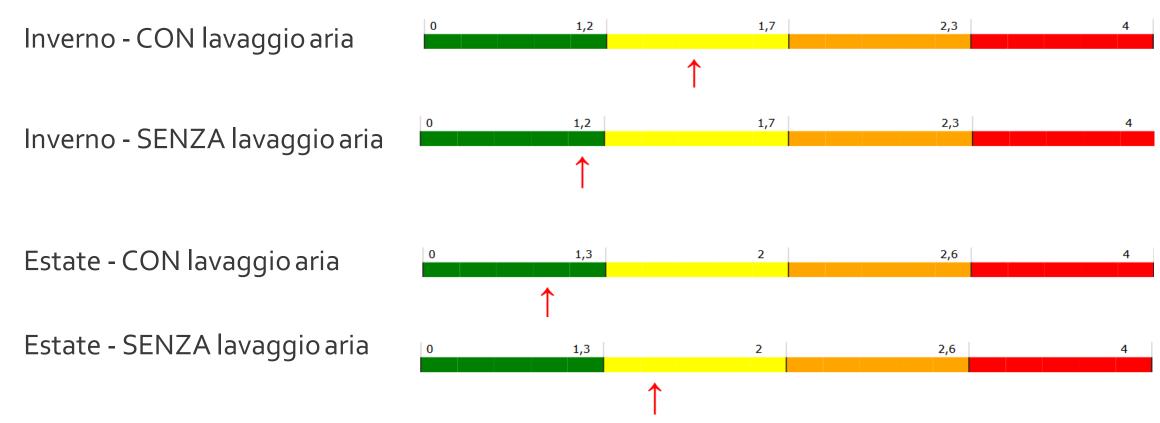
#### Classificazione carcasse al macello

Inverno CON lavaggio aria Inverno SENZA lavaggio aria

Estate CON lavaggio aria Estate SENZA lavaggio aria

| GRIGLIA<br>SEUROP |          | Distrib. % |
|-------------------|----------|------------|
| > 60%             | S        | 0,00       |
| > 55% < 60%       | E        | 1,11       |
| > 50% < 55%       | <u>U</u> | 77,78      |
| > 45% < 50%       | <u>R</u> | 21,11      |
| > 40% < 45%       | <u>O</u> | 0,00       |
| < 40%             | Р        | 0,00       |

| GRIGLI/<br>SEURO | Distrib. % |       |
|------------------|------------|-------|
| > 60% S          |            | 0,00  |
| > 55% < 60%      | Е          | 6,52  |
| > 50% < 55%      | <u>U</u>   | 80,43 |
| > 45% < 50%      | <u>R</u>   | 13,04 |
| > 40% < 45%      | <u>O</u>   | 0,00  |
| < 40%            | Р          | 0,00  |


|             | GRIGLIA<br>SEUROP |               |  |
|-------------|-------------------|---------------|--|
| > 60%       | S                 | 0,00          |  |
| > 55% < 60% | Ε                 | 5 <b>,</b> 13 |  |
| > 50% < 55% | <u>U</u>          | 89,74         |  |
| > 45% < 50% | <u>R</u>          | 5 <b>,</b> 13 |  |
| > 40% < 45% | <u>O</u>          | 0,00          |  |
| < 40%       | Р                 | 0,00          |  |

| GRIGLIA<br>SEUROP | Distrib. % |       |
|-------------------|------------|-------|
| >60% S            |            | 0,00  |
| > 55% < 60%       | Ε          | 1,35  |
| > 50% < 55%       | <u>U</u>   | 86,49 |
| > 45% < 50%       | <u>R</u>   | 12,16 |
| > 40% < 45%       | <u>O</u>   | 0,00  |
| < 40%             | Р          | 0,00  |





#### Benessere animale - Controllo lesioni polmonari



Collocazione del gruppo rispetto al campione SUIVET come da Scollo et al., 2017. Benchmarking of pluck lesions at slaughter as a health monitoring tool for pigs slaughtered at 170 kg (heavy pigs). Preventive Veterinary Medicine 144 (2017) 20–28.





#### BAT 24 Monitoraggio dell'azoto escreto

Monitorare l'azoto totale escreto nei liquami usando le seguenti tecniche con almeno la seguente frequenza (BREF 2017 pag 725)

|          | Tecnica                                                                                                                                                                               | Frequenza                                                                                                                                          | Applicabilità           |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| a)<br>b) | Calcolo del bilancio di massa dell' azoto basato sull'ingestione di alimento, il contenuto proteico e le produzioni degli animali  Stima dell'azoto totale usando analisi dei liquami | Una volta l'anno per ogni categoria (da tab. 5.1 «BAT-associated total nitrogen excreted» sono: -suini svezzati -suini grassi -scrofe con suinetti | Applicabile in generale |



#### Il bilancio dell'azoto

#### N escreto

N in entrata (alimenti, animali) – N in uscita (animali venduti e morti)

N da saldo inventario (finale – iniziale)

#### N alimenti

- Analisi degli alimenti
- Tabelle di riferimento

#### Resa dell'azoto

(N animali in uscita – N animali in entrata) / N alimenti in entrata \*100

#### N animali

| Classe e categoria                             | g N/ kg di<br>peso vivo |
|------------------------------------------------|-------------------------|
| Lattonzoli fino a 40 kg                        | 27                      |
| Magroni da 40 a 80 kg                          | 26                      |
| Magroni da 80 a 120 kg                         | 25                      |
| Grassi oltre 120 kg                            | 24                      |
| Scrofe (adulte in normale stato di nutrizione) | 23,8 (24)               |
| Scrofe molto magre e verri                     | 24,5 (24)               |





#### Il bilancio dell'azoto

| Cicli                          |          | Estate<br>SENZA lavaggio | Estate<br>CON lavaggio | Inverno<br>SENZA lavaggio | Inverno<br>CON lavaggio |
|--------------------------------|----------|--------------------------|------------------------|---------------------------|-------------------------|
| Proteina alimenti (media)      | %        | 14,18                    | 14,18                  | 14,22                     | 14,22                   |
| Azoto in entrata -<br>alimenti | kgN/capo | 10,17                    | 10,01                  | 11,65                     | 11,61                   |
| Azoto in entrata - animali     | kgN/capo | 1,39                     | 1,19                   | 1,32                      | 1,73                    |
| Azoto in uscita - animali      | kgN/capo | 4,48                     | 4,19                   | 4,48                      | 4,63                    |
| Azoto escreto                  | kgN/capo | 7,42                     | 7,12                   | 8,77                      | 8,90                    |
| resa dell'azoto                | %        | 27,12                    | 28,90                  | 24,67                     | 23,33                   |



# GOi Gas Loop

Cattura delle emissioni per un ciclo virtuoso dell'azoto nell'allevamento suino





Le emissioni ammoniacali dagli allevamenti suinicoli: da problema a risorsa

Webinar Martedì 12 dicembre 2023 ore 10:00

## Grazie per l'attenzione!

http://gasloop.crpa.it/





Divulgazione a cura di Centro Ricerche Produzioni Animali Soc. Cons. p. A.

Autorità di Gestione: Direzione Agricoltura, caccia e pesca della Regione Emilia-Romagna. Iniziativa realizzata
nell'ambito del Programma regionale di sviluppo rurale 2014-2020 — Tipo di operazione 16.1.01 — Gruppi operativi del
partenariato europeo per la produttività e la sostenibilità dell'agricoltura — Focus Area 5D - Ridurre le emissioni di gas a
effetto serra e di ammoniaca prodotte dall'agricoltura — Progetto "Cattura delle emissioni per un ciclo virtuoso
dell'azoto nell'allevamento suino".



















