

PRESENTAZIONE APP-PROSIT

Accademia dei Georgofili, Firenze

Le informazioni sui suoli viticoli toscani mappate ogni cento metri 25 Gennaio 2023

Roberto Barbetti, Maria Fantappiè - CREA, Lorenzo Gardin - CNR

Attribuzione dei dati ai nodi della griglia

Obiettivo: Partendo dalla carta dei suoli della Toscana Aumentare la risoluzione spaziale delle mappe del suolo (downscaling) e derivare proprietà e qualità suolo utili per l'applicazione di modelli

Supporto: Nodi griglia Inspire equidistanti 100 m assunti come riferimento. Equivalente a celle raster di 100mx100m (1Ha)

Metodo: **DSMART** Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees as supervised classification (Odgers et al 2014). È un metodo di analisi supervisionata dei dati utilizzando alberi decisionali

Prodotto: Una mappa probabilistica di «classi di suolo» a 100 metri, armonizzata, continua della Toscana

In italia a livello di Sistema informativo regionale, rappresenta il primo esperimento di DSM su variabili categoriche "tipologie di suolo (STS)" così di dettaglio

Per la prima volta sono stati derivati elementi della fertilità (es: basi di scambio fosforo assimilabile) difficili da spazializzare perche legate a caratteristiche ambientali molto "locali".

La banca dati dei suoli della Regione Toscana 🔊 Regione Toscana

dati pedologica regionale disponibile La banca sul sito della Regione http://www502.regione.toscana.it/geoscopio/pedologia.html ed è costantemente aggiornata dal Consorzio Lamma. E' costituita da archivi alfanumerici e geografici collegati da campi chiave; contiene informazioni sui suoli di carattere <u>puntuale</u> (profili, orizzonti, analisi), <u>areale</u> (unità cartografiche e paesaggi a varie scale) e <u>concettuale</u> (tipologie di suolo, classificazione, etc). Da essa sono state ricavate numerose carte derivate sulle limitazioni dei suoli, sulla fertilità, sui caratteri idrologici.

Consistenza della banca dati: (Gennaio 2023)

4.603 profili di suolo

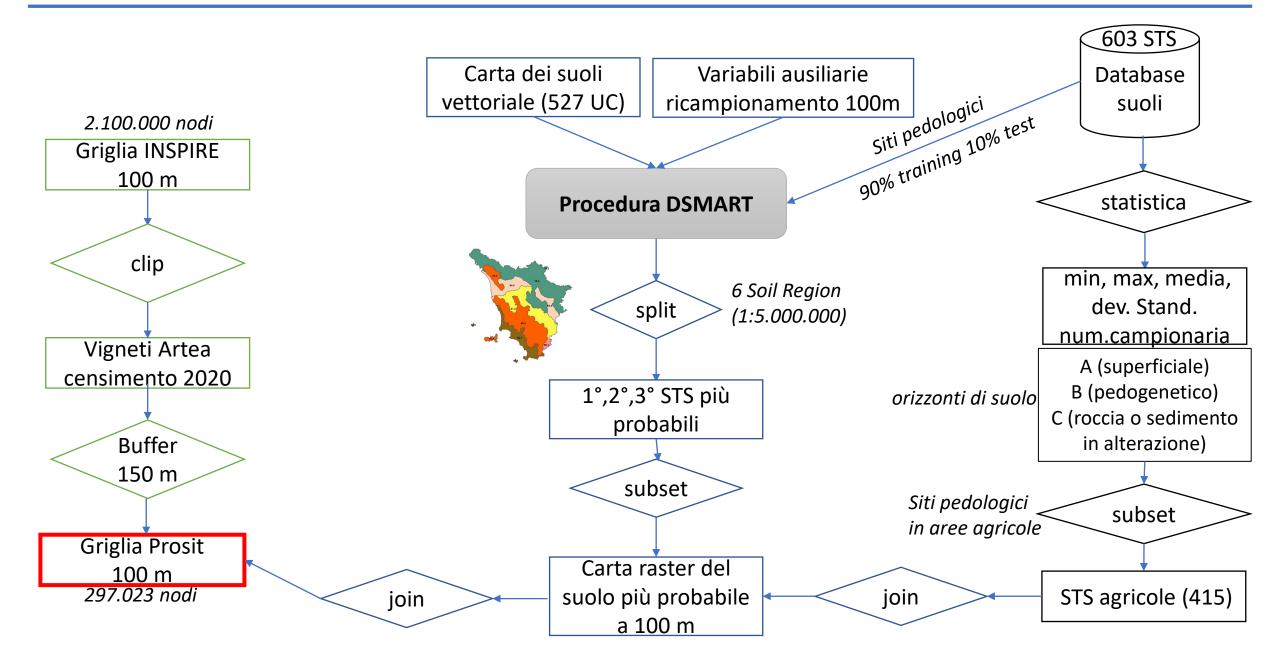
16.579 orizzonti descritti

10.517 orizzonti analizzati in laboratorio (misure di carbonio organico, granulometria, salinità, calcare, pH, elementi della fertilità)

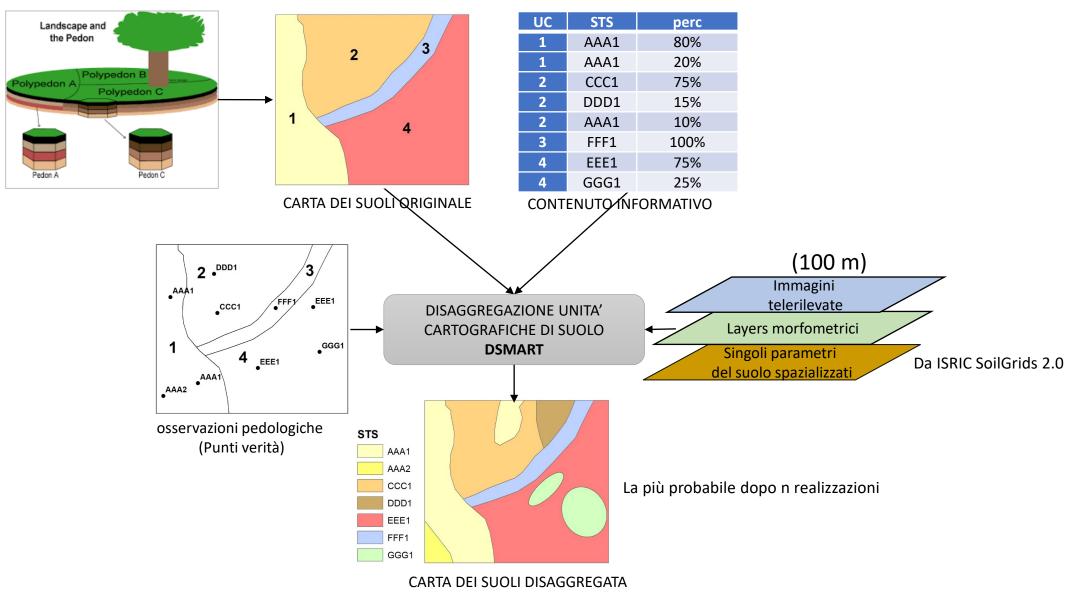
603 tipologie pedologiche (STS) - Catalogo dei suoli

155 unità cartografiche (Carta dei suoli in scala 1:250.000)

527 unità cartografiche (Carta dei pedopaesaggi a scala di semidettaglio – Livelli 2 e 3).


La banca dati contiene inoltre numerosi algoritmi di calcolo, schemi valutativi, **PTF** (PedoTransferFunctions) per ottenere le stime di parametri idrologici (densità apparente, Ksat, contenuti idrici a vari potenziali, AWC); consente output divulgativi, legende e automatismi per la creazione e' l'aggiornamento del Catalogo Regionale dei suoli.

Tutte le STS attribuite alla griglia sono descritte in dettaglio nel catalogo dei suoli


Concetti chiave

- **UTS:** (unita tipologiche di suolo): sono insieme di siti pedologici con attributi ambientali comuni e con caratteri genetici tassonomici simili es: **QUE**
- **STS**:(sottounità tipologica di suolo) insieme di siti pedologici con caratteri applicativi simili. identificano differenze significative, dal punto di vista essenzialmente applicativo e pragmatico, all'interno dei suoli di una stessa unità. Le sottounità tipologiche di suolo sono identificate dalla sigla dell'unità tipologica di suolo seguita da un numero progressivo es: **QUE1**
- UC: (unità cartografica) è una delineazione di Pedo-paesaggio; un tratto di superficie terrestre che ha un certo significato pedologico: raccoglie suoli che hanno in comune una o più caratteristiche, proprietà o processi, ed è individuabile da un insieme di condizioni climatiche, litologiche, morfologiche, pedologiche, di uso del suolo e di vegetazione es: QUE1_ORC1
- **Es: QUE1_ORC1** (QUE1 50%, ORC 40%, CRV1 10%) le **STS** che costituiscono l'**UC** sono distribuite nel pedopaesaggio secondo un certo modello di distribuzione di suoli
- Tutte queste definizioni si ritrovano sul sito della Regione Toscana e sulle linee guida dei metodi di rilevamento e l'informatizzazione dei dati pedologici (EAC Costantini et al 2007)

Flusso di lavoro

Come lavora DSMART

STS più probabile ad ogni nodo della griglia

Variabili ausiliarie

Covariate PROSIT- ricampionate a 100 m

red	Landsat Band 3 (Red)	S+O	2019	Raster	Continuous	25 m	Digital number 8 bit	Hansen M.C.et al., 2013, (2019 update)
nir	Landsat Band 4 (Near Infrared reflectance)	S+O	2019	Raster	Continuous	25 m	Digital number 8 bit	Hansen M.C.et al., 2013, (2019 update)
swir1	Landsat Band 5 (Short wave infrared)	S+O	2019	Raster	Continuous	25 m	Digital number 8 bit	Hansen M.C.et al., 2013, (2019 update)
swir2	Landsat Band 7 (Short wave infrared)	S+O	2019	Raster	Continuous	25 m	Digital number 8 bit	Hansen M.C.et al., 2013, (2019 update)
evi	Modis (enhanced vegetation index)	0	2015	Raster	Continuous	250 m		MODIS
LST	Modis (Land Surface Temperature)	S+O	2015	Raster	Continuous	1000 m	° K	MODIS
ndivis5	Modis NDVI Sum of June-September (5 layers)	S+O	2015	Raster	Continuous	250 m	index	Langella G. 2008
ndivid16	Modis NDVI Maximum difference March-November (16 layers)	S+O	2015	Raster	Continuous	250 m	index	Langella G. 2008
nort	Northness (orientation in combination with the slope)	R	2016	Raster	Continuous	25 m	index	GDAL: gdaldem gdal_calc.py
dem25	Digital Elevation Model	R	2016	Raster	Continuous	25 m	m	Copernicus EU-DEM v1.1
slope	slope	R	2016	Raster	Continuous	25 m	%	Copernicus EU-DEM v1.1
vdepth	Valley depth	R	2016	Raster	Continuous	25 m	m	Copernicus EU-DEM v1.1
twi	Topographic Wetness Index	R	2016	Raster	Continuous	25 m	m² rad-1	Copernicus EU-DEM v1.1
VDCN	Vertical distance Channel network	R	2016	Raster	Continuous	25 m	m	Copernicus EU-DEM v1.1
mrvbf	Multi Resolution Index of Valley Bottom Flatness	R	2016	Raster	Continuous	25 m	none	Copernicus EU-DEM v1.1

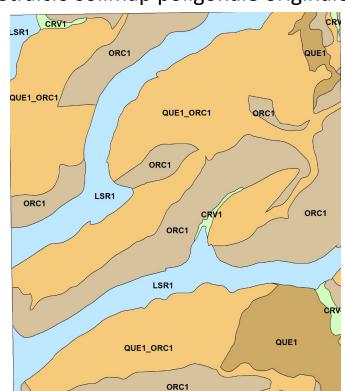
Variabili ausiliarie SoilGrid 2.0 (2021)

limitazioni intrinseche dei dati di SoilGrids (bassa risoluzione (250 m), incertezza)

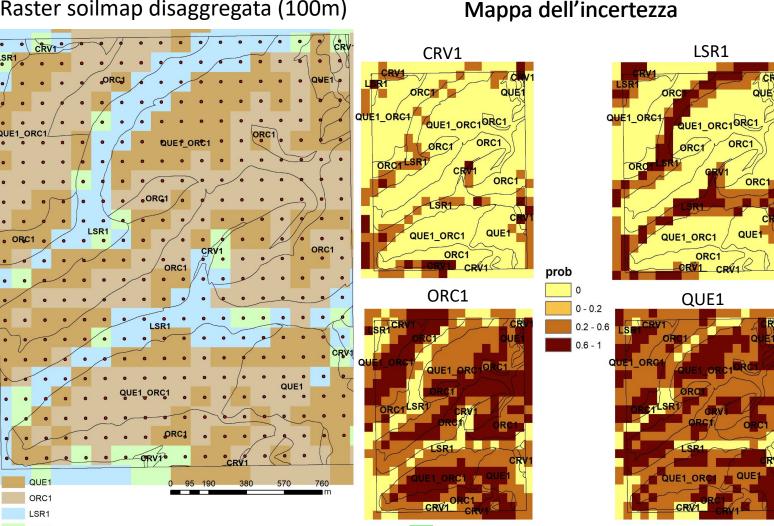
sgclay	Clay 30 cm	S	2021	Raster	Continuous	250	g/kg	Soilgrid2.0
sgsand	sand 30 cm	S	2021	Raster	Continuous	250	g/kg	Soilgrid2.0
sgph	pH 30 cm	S	2021	Raster	Continuous	250		Soilgrid2.0
sgsk	Coarse fragments 30 cm	S	2021	Raster	Continuous	250	g/kg	Soilgrid2.0

poligono	UC	STS	%
1	QUE1	QUE1	75
1	QUE1	ORC1	20
1	QUE1	CRV1	5
2	QUE1_ORC1	QUE1	60
2	QUE1_ORC1	ORC1	40
3	CRV1	CRV1	100
4	LSR1	LSR1	100
5	ORC1	ORC1	60
5	ORC1	QUE1	40

CRV1


ORC1 QUE1 QUE1 ORC1

Esempio pratico


ORC1 si concentrerà sulle aree piu pendenti CRV1 si concentrerà sulle aree meno pendenti QUE1 si concentrerà sulle aree a pendenza intermedia LSR1 si concentrerà lungo le valli

CRV1 suoi argillosi molto idromorfi LSR1=suoli fluviali argillosi QUE1 suoli argillosi conservati ORC1 suoli argillosi erosi

Stralcio soilmap poligonale originale

Raster soilmap disaggregata (100m)

Conclusioni

Vantaggi

Non ce bisogno di spazializzare le singole proprietà una ad una per profondità diverse. La STS è un oggetto 3D, perché è composta dagli orizzonti di suolo a diversa profondità

Le STS è definita da dati statistici calcolati seguendo il tipo e la diversa profondità degli orizzonti genetici dei profili di suolo appartenenti alla stessa STS. Sono stati calcolati gli intervalli di confidenza minimi e massimi per ogni STS tramite media, deviazione standard e numerosità campionaria.

Svantaggi

Quando si spazializza per «classi» le performance di accuratezza (misclassification) possono essere piuttosto basse. Quando si spazializzano le variabili continue di solito le performance in termini di RMSE sono migliori

Esempio Misclassification

CNA1 Fragic Palexeralf

SUE1 Aquultic Haploxeralf

potrebbe essere un errore di classificazione ma: tassonomicamente sono simili e quindi DSMART potrebbe suggerirti di armonizzare!

Sviluppi futuri

La procedura sarà oggetto di più accurata validazione e...

Nell'ambito di alcuni Progetti Europei quali EJP SOIL e SERENA (Modellazione e cartografia delle minacce e dei servizi ecosistemici del suolo), in collaborazione con CNR IBE e Consorzio Lamma

Sono in fase di realizzazione alcune elaborazioni di dati pedologici regionali che utilizzano le più recenti tecniche di Digital Soil Mapping; per spazializzazioni a 100m di singoli parametri pedologici quali il carbonio organico, la tessitura, il pH.

Tali prodotti potranno costituire la base per una nuova rielaborazione e validazione della Procedura DSMART che attualmente è stata condotta mediante valutazione esperta dei territori analizzati.

GRAZIE PER L'ATTENZIONE

